CENTER FOR TOKAMAK TRANSIENTS SIMULATION

FES-ASCR Collaboration: Linear Solvers

Samuel Williams, Nan Ding, Yang Liu, Sherry Li Lawrence Berkeley National Lab

FES Project Review

Virtual

October, 2021

FES-ASCR Collaboration: Linear Solvers

CHALLENGES

- M3D and NIMROD require solving large, ill-conditioned systems
- Both use SuperLU-preconditioned GMRES
 - 1. Factor a block Jacobi preconditioner
 - 2. Apply the preconditioner (L&U solves) on every GMRES iteration
 - 3. System can change every time step
- Bottlenecks...
 - Factorization time is expensive
 <<1 factorization per solve
 - Preconditioner (SpTRSV) dominates solve time
 Two SpTRSV per iteration; many iterations

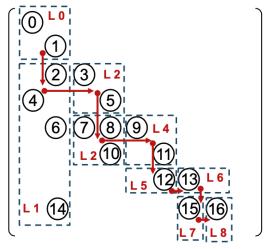
MULTI-FACETED APPROACH

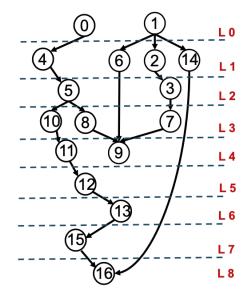
- Ensuring M3D/NIMROD teams can leverage GPU supercomputers
- Parameter Tuning in SuperLU
- Preconditioner Performance
 - GPU-accelerated L&U solves
 - GPU-accelerated Factorization
- Factorization and Preconditioner Scalability

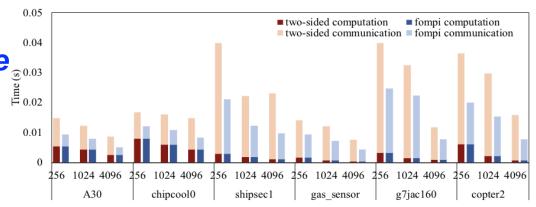
Close Collaborations with PPPL and TechX Teams

- LBNL dedicated ~20% effort to helping teams without expectation of publications
- Monthly Telecons with each team
 - Ensure ASCR activities are coupled with FES needs
 - Provide guidance on GPU programming and future DOE machines
- M3D-C1 joint code work: PPPL-LBNL-PETSc
 - Compiling GPU-accelerated PETSc with SuperLU presented a number of issues (number of zoom calls to resolve)
 - LBNL-PPPL resolved installation/performance issues on NERSC's Cori Haswell and KNL machines
 - LBNL-PPPL worked together to install M3D-C1 with GPU use on "Traverse" IBM/NVIDIA machine at PPPL
 - Parameter tuning using GPTune
- NIMROD joint code work: TechX-LBNL
 - Separate code review/debugging sessions to incorporate new features of SuperLU
 - Upgraded NIMROD interface to use SuperLU's new Fortran90 interface
 - Adapted SuperLU 3D algorithm interface (for reducing communication) to NIMROD matrix layout
 - Parameter tuning using GPTune

Parameter Tuning for M3D-C1 and NIMROD

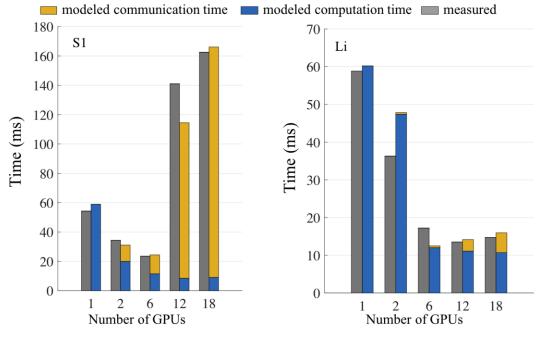

- SuperLU/NIMROD/M3D-C1 have a number of parameters that control mathematical properties, parallelism, matrix assembly block size, etc...
 - Some parameters can be set cognizant of how SuperLU will be used throughout an application
 - Others are machine and problem-dependent
- Exploiting diagonal dominance and reusing sparsity ordering improved M3D-C1 factorization time by 3x and solver performance by 15%
- LBNL developed a Gaussian Process
 Bayesian optimization framework (GPTune)
 to help users efficiently explore the combinatoric parameter space
 - Improves overall NIMROD performance by 10%
 - Improves overall M3D-C1 performance by 17%


Algorithms & Software Advances from Applied Math Side


Preconditioner Performance

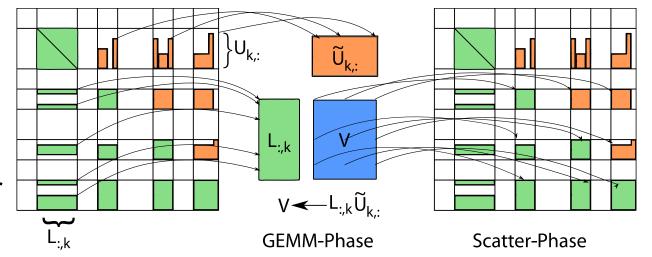
 Preconditioner time is dominated by two repeated SpTRSVs (L-solve and U-Solve w/ 1 RHS)

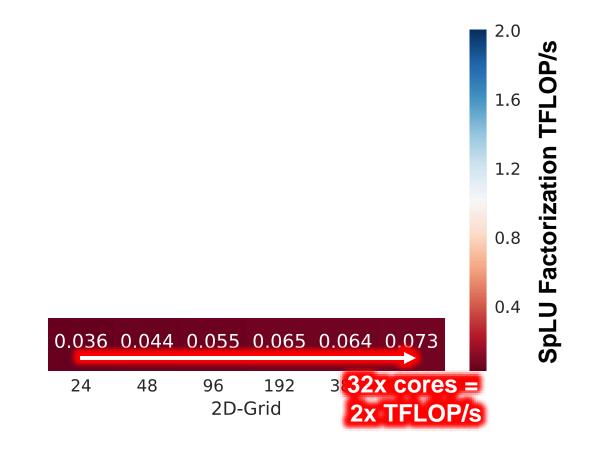
- Each can be viewed as walking a DAG…
 - Nodes are small (<< 128x128) GEMVs/TRSVs
 - Edges are small (<< 1KB) MPI messages
- Performance is highly dependent on...
 - MPI Overhead (messaging rate)
 - DAG Critical Path
- ➤ One-sided communication (foMPI) can improve SpTRSV by 2.2x on Cori KNL
- > Performance model highlights nuances



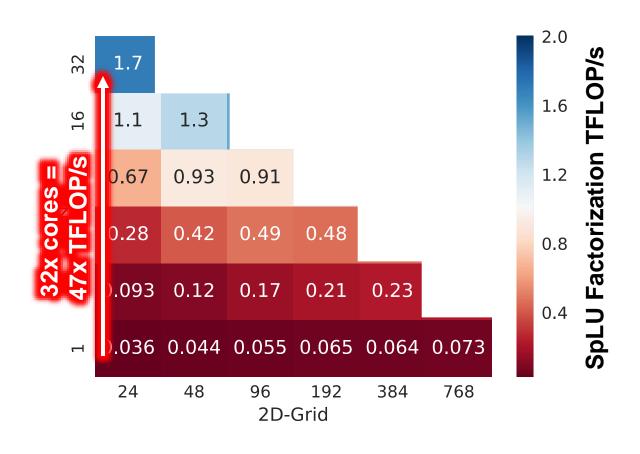
GPU-Accelerated Preconditioners

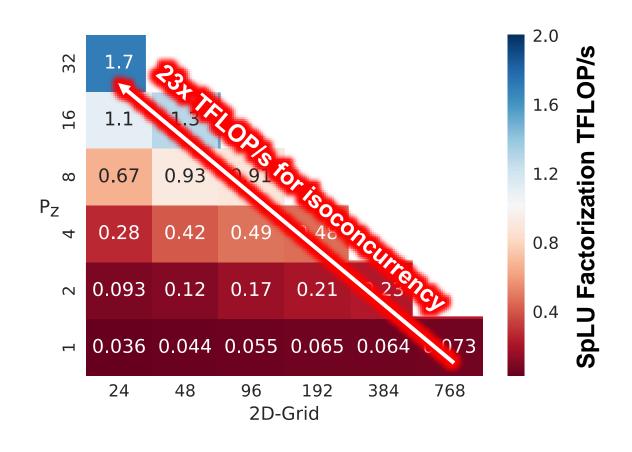
 LBL has created single-GPU SpTRSV solvers for NVIDIA (CUDA) and AMD (HIP) GPUs

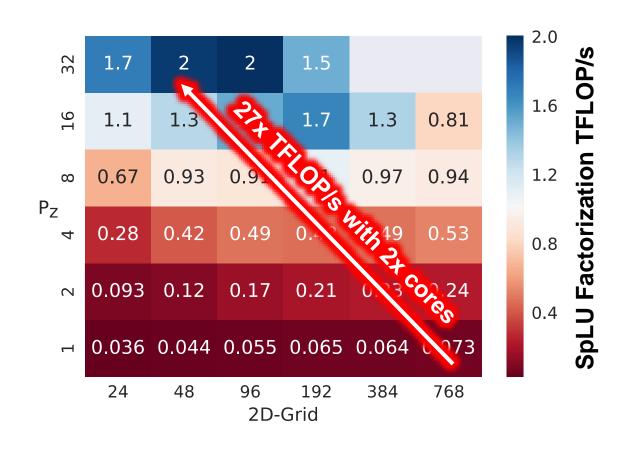

- Works best if a poloidal plane can fit on one GPU
- Extended with one-sided GPU libraries (NVSHMEM, ROCSHMEM*)
 - > Enables scalable, distributed memory, GPU-accelerated solvers
 - Performance and scalability are highly dependent on matrix sparsity and inter-node communication performance
- Modeled alternate process mappings for GPUs
 - Potential for 2x speedup over default 1D block cyclic mapping using 6 GPUs

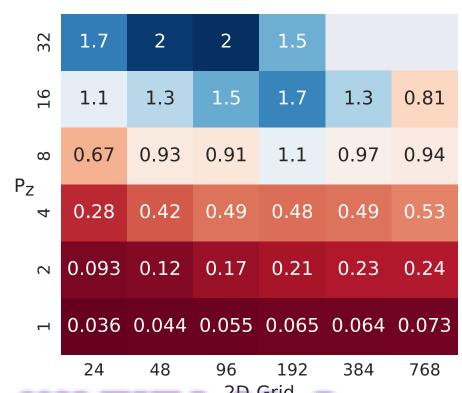

*AMD performance evaluation delayed due to waiting for AMD software updates

GPU-Accelerated Factorization


- SuperLU performs sparse LU factorization
- For efficiency, at run time, SuperLU identify dense blocks for Schur complement updates (allows DGEMM calls)
- DGEMMs can be executed on the CPU or offloaded to the GPU
- Subsequent work offloaded gather/scatter operations to the GPU as well
- ➤ Using GPUs can accelerate factorization by 3x


- SpLU and SpTRSV use 2D block cyclic process decompositions
 - Hard to attain perfect scaling
- LBNL explored 3D approaches to factorization and solve to reduce communication
 - Selective copies of Schur complement updates along 3rd dimension of process grid
 - Reduce number of messages by log(n)
 - Reduce message volume by sqrt(log(n))
 - Less than 2x increase in memory usage


- SpLU and SpTRSV use 2D block cyclic process decompositions
 - Hard to attain perfect scaling
- LBNL explored 3D approaches to factorization and solve to reduce communication
 - Selective copies of Schur complement updates along 3rd dimension of process grid
 - Reduce number of messages by log(n)
 - Reduce message volume by sqrt(log(n))
 - Less than 2x increase in memory usage


- SpLU and SpTRSV use 2D block cyclic process decompositions
 - Hard to attain perfect scaling
- LBNL explored 3D approaches to factorization and solve to reduce communication
 - Selective copies of Schur complement updates along 3rd dimension of process grid
 - Reduce number of messages by log(n)
 - Reduce message volume by sqrt(log(n))
 - Less than 2x increase in memory usage

- SpLU and SpTRSV use 2D block cyclic process decompositions
 - Hard to attain perfect scaling
- LBNL explored 3D approaches to factorization and solve to reduce communication
 - Selective copies of Schur complement updates along 3rd dimension of process grid
 - Reduce number of messages by log(n)
 - Reduce message volume by sqrt(log(n))
 - Less than 2x increase in memory usage
- For larger problems, this can improve performance/scalability by 3.5x to 27x

- SpLU and SpTRSV use 2D block cyclic process decompositions
 - Hard to attain perfect scaling
- LBNL explored 3D approaches to factorization and solve to reduce communication
 - Selective copies of Schur complement updates along 3rd dimension of process grid
 - Reduce number of messages by log(n)
 - Reduce message volume by sqrt(log(n))
 - Less than 2x increase in memory usage
- For larger problems, this can improve performance/scalability by 3.5x to 27x

2022 SIAM Activity Group on Supercomputing Best Paper

8.0

Year 5 Plans and Future Directions

Year 5 Plans

- Optimization of GPU-accelerated preconditioners on Perlmutter (A100/NVSHMEM) and Frontier (MI200/ROCSHMEM)
- Implementation of new U-solve in SuperLU data structure that trades increased memory usage for parallelism-friendly memory access

Future Directions

- Explore use of STRUMPACK (low rank approximation) as an alternative to direct factorization
- Development of GPU-friendly sparse linear solvers for ill-conditioned problems

Questions?